8 research outputs found

    Engineering Electron Superpositions Using a Magnetic Field

    Get PDF
    A Rydberg atom has a highly excited valence electron which is weakly bound and far from the nucleus. These atoms have exaggerated properties that make them attractive candidates for quantum computation and studies of fundamental quantum mechanics. The discrete energy levels of Rydberg atoms are shifted in the presence of an electric field by the Stark effect and are similarly shifted due to a magnetic field by the Zeeman effect. These effects couple the energy levels together, creating avoiding crossings. At these avoided crossings, an electron in one energy level can jump to the other. Our goal is to be able to use these avoided crossings to put the electron in a superposition state of both energy levels. In order to achieve this we created new software that enables us to calculate the energy levels of an electron in both a magnetic and an electric field. We present energy level maps visualizing the results of the Stark and Zeeman effects

    Improving the State Selectivity of Field Ionization With Quantum Control

    Get PDF
    The electron signals from the field ionization of two closely spaced Rydberg states of rubidium-85 are separated using quantum control. In selective field ionization, the state distribution of a collection of Rydberg atoms is measured by ionizing the atoms with a ramped electric field. Generally, atoms in higher energy states ionize at lower fields, so ionized electrons which are detected earlier in time can be correlated with higher energy Rydberg states. However, the resolution of this technique is limited by the Stark effect. As the electric field is increased, the electron encounters numerous avoided Stark level crossings which split the amplitude among many states, thus broadening the time-resolved ionization signal. Previously, a genetic algorithm has been used to control the signal shape of a single Rydberg state. The present work extends this technique to separate the signals from the 34s and 33p states of rubidium-85, which are overlapped when using a simple field ramp as in selective field ionization

    Improving the state selectivity of field ionization with quantum control

    Get PDF
    The electron signals from the field ionization of two closely-spaced Rydberg states of \mbox{rubidium-85} are separated using quantum control. In selective field ionization, the state distribution of a collection of Rydberg atoms is measured by ionizing the atoms with a ramped electric field. Generally, atoms in higher energy states ionize at lower fields, so ionized electrons which are detected earlier in time can be correlated with higher energy Rydberg states. However, the resolution of this technique is limited by the Stark effect. As the electric field is increased, the electron encounters numerous avoided Stark level crossings which split the amplitude among many states, thus broadening the time-resolved ionization signal. Previously, a genetic algorithm has been used to control the signal shape of a single Rydberg state. The present work extends this technique to separate the signals from the 34s34s and 33p33p states of rubidium-85, which are overlapped when using a simple field ramp as in selective field ionization

    Perturbed Field Ionization for Improved State Selectivity

    Get PDF
    Selective field ionization (SFI) is used to determine the state or distribution of states to which a Rydberg atom is excited. By evolving a small perturbation to the ramped electric field using a genetic algorithm, the shape of the time-resolved ionization signal can be controlled. This allows for the separation of signals from pairs of states that would be indistinguishable with unperturbed SFI. Measurements and calculations are presented that demonstrate this technique and shed light on how the perturbation directs the pathway of the electron to ionization. Pseudocode for the genetic algorithm is provided. Using the improved resolution afforded by this technique, quantitative measurements of the 36p3/2 + 36p3/2 --\u3e 36s1/2 + 37s1/2 dipole–dipole interaction are made
    corecore